关灯
请选择 进入手机版 | 继续访问电脑版
智为网 首页 冉冉之星 查看内容
0

人工智能芯片拉开序幕,中国公司加入争夺战

摘要: 今年以来,一家曾经不那么为人所知的公司英伟达(NASDAQ:NVDA)开始浮出水面。这家公司在今年内创下了20次历史收盘最高纪录,股价累计上涨约69%。这不仅跑赢了追踪半导体板块的基金涨幅,还远超同期标普500指数。有 ...

今年以来,一家曾经不那么为人所知的公司英伟达(NASDAQ:NVDA)开始浮出水面。这家公司在今年内创下了20次历史收盘最高纪录,股价累计上涨约69%。这不仅跑赢了追踪半导体板块的基金涨幅,还远超同期标普500指数。

有投行预测英伟达股价还有40%的上升空间。在过去两年间,英伟达市值已经上涨7倍。

英伟达是这一轮人工智能芯片大战兴起的导火索。英特尔、高通、AMD等芯片公司随之宣布入局,谷歌、百度等互联网公司也纷纷披露开发计划,一些创业公司更是迅速推出新的设计方案和产品。

人工智能芯片卡位战正酣 中国公司机会难得

英伟达的GPU产品最初受众狭窄,给游戏PC提供视觉特效,帮它们和专业电子游戏机竞争。但随着新一轮人工智能兴起,GPU更为适合深度学习所需的并行计算能力,芯片开始供不应求,是第一批走向台前的类AI芯片玩家。

奥银湖杉创始合伙人CEO苏仁宏专注投资智能硬件,他认为,当下,人工智能功能基本基于云端,不能全面实现智能能力,原因就在于智能芯片的缺位。因此,人工智能能力不仅是下一代智能手机竞争高地,也是当下智能硬件的突围瓶颈。

目前主流CPU、CPU+GPU、CPU+FPGA、CPU+ASIC架构均因硬件规模、算法、功耗等原因不符合AI芯片理想架构,相对来说功能动态、实时地跟随软件变化而变化更重要。

战火兴起后,英伟达开始疯狂砸钱,力求在最短时间内将GPU转化为更通用的计算工具。仅研发一项,目前已经投入了将近100亿美元。

第三方机构晨星报告中指出,2021年,上述玩家所在的人工智能芯片市场总价值将达到200亿美元。TechNavio则预测,到2021年前,全球人工智能芯片年均复合增长率将超过54%。

由普通沙子制成的芯片,是整个IT发展的基础。谁掌握了这颗驱动计算的“心”,谁就将引领产业发展,并获得巨大的收益。PC时代的英特尔、智能手机时代的高通,都曾胜者为王,营收的增长带动了资本市场的青睐。

时势造英雄

英伟达由黄仁勋与Curtis Priem和Chris Malachowsky在1993年创立于硅谷,公司总部与众多半导体公司比邻而居。成立以来,英伟达在半导体行业都是一家不温不火的公司,偏安于图形处理器(GPU)市场。

但就在这个时候,英伟达作出了一件极为重要的决定:加注技术投入和软件开发,令GPU可以在电脑屏幕上处理图像之外,进行更为复杂的任务处理。

2007年前后,一个被命名为“CUDA”(统一计算设备架构)项目被确立,其每年的开支大概5亿美元,这在当时占据了公司年度总营收的六分之一。今年54岁的黄仁勋回忆称,“这为公司带来了极大的成本压力。”

但正是这个项目确立了英伟达在人工智能的先发优势。英伟达一面整合CUDA进入各等级产品,另一面游说高等学校开设相关课程,并赞助研究所和创业公司,希望它们可以一路支持GPU的发展。

英伟达甚至提供测试版本的GPU给亚马逊等大型公司的科学家使用。尽管这样做看起来像是希望工程师帮助其寻找产品漏洞,但这种积极的态度打动了硅谷的工程师们。他们更积极地为GPU及其生态进行研发。

2012年开始,人工智能应用领域的玩家发现,CPU为核心的硬件设备已经难以满足深度神经网络(DNN)多层级特点的计算要求,而GPU可以满足其需求。他们开始使用英伟达的芯片进行人工智能模型的训练。

技术随后从研究转向产业,浪潮集团人工智能与高性能产品部总经理刘军告诉《财经》记者,“2014年前后,那些今天在人工智能领域很有名的公司开始寻找GPU专家,帮助他们将已有研发的DNN从CPU迁移至GPU。”

人工智能芯片卡位战正酣 中国公司机会难得

借助市场机遇,英伟达业务快速增长。这家公司2017财年第二季度报告数据显示,营业收入为22.3亿美元,同比增长56%,环比增长15%。其中人工智能相关业务增长更是亮眼,GPU业务收入同比增长59%,而数据中心业务增长了2.5倍以上。

该公司CFO Colette M. Kress表示,增长源自人工智能产品组合的丰富,以及不断出货。如今,英伟达的芯片越来越多被使用在计算机以外的设备上,如VR设备、无人机、机器人、无人驾驶汽车,更重要的是其逐渐成为人工智能服务器的新核心。

不过,财报发布当天盘后,英伟达股价一度下跌8%。随后虽回涨,但阴影一直并未散去。这一变化源自投资者的担忧——芯片领域的巨头们,尤其英特尔,此时已经看到了趋势,纷纷入局,而英伟达目前的成功更像是一种偶发事件。

英特尔迎战英伟达

深度学习理论引领了人工智能最新一轮热潮,芯片是完成计算的核心,是人工智能的“大脑”。整个环节分为训练(Training)算法和利用算法推理(Inference)结论两个部分。

训练是人工智能的基础,构建应用的关键。在这一环节,英特尔利用Xeon Phi处理器与英伟达的GPU直面竞争,并通过多项收购扩大产品布局。围绕两家巨头的竞争,谷歌和AMD虽有心杀入战局,但仍在边缘,而更小的创业者则仍处于探索阶段。

2016年8月,英特尔收购美国创业公司Nervana Systems。其深度学习芯片Engine的处理速度是GPU的10倍。随后,英特尔将其与自身业务整合,并追加3.5亿美元的投入,用于研发DNN软硬一体化平台和两代芯片产品,将与Xeon Phi匹配。

Fiaz Mohamed是英特尔人工智能产品事业部业务拓展及解决方案部署负责人,因Nervana收购而加入英特尔。他对《财经》记者说,“我们并没有陷入困境。借助英特尔在设计和工程上的经验,成为英特尔的一部分,这有利于我们的产品推向市场。”这是在训练层创业者普遍的结局,即被巨头收编。

Fiaz现在很忙,他每天与5个-7个客户见面。在与客户的直接交流中,Fiaz被反复问到,与英伟达最大的差异,因为他的客户希望可以得到更加针对自身应用的帮助。

“为满足性能、效率和规模的需求,人工智能不能只使用通用型的产品。”Fiaz告诉《财经》记者,“通过收购在各个领域不断增强自己的优势,如今我们也做定制化的产品。”

GPU之外,英特尔认为FPGA(可编程阵列)更适合人工智能发展需求。2015年,英特尔以这家公司历史上最大金额,收购了硅谷芯片制造商Altera。FPGA就像一张可以重复擦写的白板,可以根据不同计算需求,进行修改。英特尔预测组合将实现20倍性能的提升。

英特尔CEO科再奇曾在一次主题演讲中明确表示,FPGA是英特尔未来发展的重要核心。其将加大投资和扩充FPGA产品路线,支援更长的产品生命周期,并调动其他业务部门支持。

英特尔的强势逼迫英伟达也在加紧弥补自身不足。2017年GPU技术大会上,英伟达发布了新一代处理器架构Volta,以及使用这一架构的深度学习加速卡。经过重新设计,新的架构能效提高了50%,计算速度也随之提升了12倍。

与上述两家公司长期竞争的AMD也想在这一环节分一杯羹。2016年底,AMD发布了三款针对深度学习的处理器加速解决方案。

该公司应用工程高级总监Greg Stoner告诉《财经》记者,“AMD将是唯一可以利用丰富x86(CPU)和GPU知识产权技术推动人工智能实现的公司”。

与之相反,谷歌则另辟蹊径。2016年5月,谷歌发布专门为机器学习优化的专用处理器TPU(张量处理器),并宣布AlphaGo的计算硬件核心便来自于此。

一年后,谷歌将其TPU升级至2.0版本。谷歌发布博客称,以往需要一整天时间利用32个GPU训练的翻译模型,如今只需要一个下午的时间,并且只用八分之一的TPU集群(每64个TPU组成一个集群)就可以达到相同精度。

不过,谷歌并没有急于将TPU商业化,而是与自身开源的深度学习框架TensorFlow结合,并通过自身云计算平台对外提供服务。谷歌是否会对外单独出售TPU处理器,目前尚不得而知。

这是一个群雄并起的时代。

端、云大混战

与泾渭分明的训练层竞争不同,推理层是群雄大乱斗。一些没有芯片研发背景的公司也纷纷加入战局,去争抢那200亿美元的市场和未来。

由于应用场景对性能、时延等参数提出具体的要求,计算核心处理器所处的位置成为不同厂商的争论焦点。有人认为,需要在设备端就能迅速反馈结果,而另一派认为应该将采集到的数据传回云端,由服务器进行终端设备难以匹敌的复杂计算。

人工智能芯片卡位战正酣 中国公司机会难得

高通认为前者才是方向。该公司工程技术副总裁Jeff Gehlhaar表示,随着移动设备性能的提升,高通将凭借海量终端的覆盖卡位市场。

手机和汽车成为高通发力的方向。目前,高通已经在其中高端芯片上提供人工智能所需要的计算能力。数据显示,未来五年全球智能手机累计出货将超过85亿部,而高通当前的市场份额为43%(Strategy Analytics数据)。保守计算,高通将覆盖37亿部智能手机。

高通发布的汽车驾驶芯片则将改变以往对路面交通数据本地收集、云端处理的模式,其集成了定位、机器学习等功能,大部分数据在本地设备上即可完成运算和反馈。

Jeff Gehlhaar称,在终端侧处理数据的重要性主要有三点:更好地保护用户的隐私,本地处理有助于解决无人驾驶等对实时决策的需求,以及将更有效地利用网络带宽。

移动芯片厂商和终端厂商成为这一观点的支持者。展讯通信将在2018年发布产品,而苹果则已经将其研究成果应用于最新手机中,魅族、华为等手机厂商更是宣布其终端产品已包括人工智能技术,用于提升用户体验。

值得注意的是,高通也在悄然布局服务器市场。关于云端结合,Jeff Gehlhaar并未正面回应,但其所展示的幻灯片显示,高通已为云计算平台留出位置,“分布式计算架构”将与“神经处理架构”通过网络连接,而高通的最大优势就在于处理网络连接。

不过,一批云计算公司和英特尔则认为,用户并不会在移动设备上安装厚重的人工智能软件,以及在有限的电池功耗下使用这些功能完成推理,因此架设在云端,通过网络传输数据和结果成为最佳选择。

2015年,微软开始实践CPU+FPGA组合的应用。2016年,亚马逊AWS推出基于FPGA的云服务器产品。中国公司也随之跟进,浪潮集团人工智能与高性能产品部总经理刘军表示,百度除了在内部拥有核心的专家团队进行研究外,还与浪潮这样的合作伙伴共同设计专用的芯片服务器主板。

2017年9月,阿里云对外宣布,已在GPU方案之外,为其人工智能系统储备了英特尔和赛灵思等芯片厂商FPGA产品。阿里云资深专家张献涛对《财经》记者称,一块英伟达的芯片成本或将高达数万元人民币。成本之外,为追求更高的计算性能和业务灵活性,开始探索FPGA方案以及更为定制化芯片逐渐成为厂商的新选择。

在智能手机时代于移动芯片市场失利的英特尔,正在借助无人驾驶重新杀向移动端。英特尔以历史第二、远超前年营收的价格,完成对以色列自动驾驶技术公司Mobileye的收购。该公司工作人员称,英特尔无人驾驶事业部与Mobileye正在整合产品和组织架构。

不仅如此,最近两年,英特尔在人工智能市场频频出手收购。2016年4月起,英特尔陆续收购了意大利机器人和无人驾驶半导体芯片制造商Yogitech,以及两家计算机视觉技术公司俄罗斯的Iseez和美国的Movidius,后者更是自主研发了新架构低功耗的处理器VPU。

中国阵营的希望

在这场硝烟尚未完全燃起的战争中,美国一直以来是全球人工智能领域领跑的国家,但中国已经开始着手加速入局。这两年,数家中国公司借力开始芯片研发,“XPU”的出现如雨后春笋。

总部在北京的创业公司地平线就以“BPU”命名其人工智能芯片产品,并注册成为商标;另一家名为“深鉴”的公司将其开发的处理器命名为“DPU”,并且已经发布了两款不同架构的产品;此前专注提供比特币“矿机”的嘉楠耘智号称2017年将发布人工智能芯片“KPU”。

由于事关未来战略,互联网巨头也加入了战局。百度率先登场,阿里紧随其后。2017年,百度与合作伙伴赛灵思共同发布了一款云计算加速处理器“XPU”。百度研究院欧阳剑表示,XPU将在效率和性能上超越GPU,同时提供类似CPU的灵活性。

2017年6月底到7月初,阿里技术委员会主席王坚曾带队前往硅谷考察,与超过30家人工智能公司进行接触,其中包括多家人工智能芯片公司。阿里巴巴的技术专家透露,用于人工智能的“XPU”研发也已经在内部列上日程。

从技术本身来看,中科院孵化的创业公司中科寒武纪是这批中国公司中的佼佼者,如果和英伟达对标,它拥有超过100多件专利和自己的指令集系统。中科龙芯副总裁张戈告诉《财经》记者,寒武纪创始人(陈云霁)曾是龙芯3号处理器的主结构设计之一,另一个创始人陈天石也曾在中科院计算所工作,他与陈云霁是亲兄弟。

2017年8月,寒武纪宣布完成1亿美元的A轮融资,领头方是国有资本投资运营公司旗下基金的国投创业,联想创投、阿里巴巴创投等社会资本以及中科院旗下资产也纷纷跟投。目前该公司估值已达10亿美元。

“原来可能需要三块英伟达的‘卡’(指芯片板卡),现在只需要一块寒武纪,就可以应对整个数据中心的消耗。”联想创投合伙人宋春雨告诉《财经》记者,这吸引了他,他预计这家公司今年就会有营收。

目前的公开信息显示,寒武纪已经发布一款名为寒武纪1A处理器,主要面向智能手机、无人机、可穿戴设备和智能驾驶等设备。根据规划,寒武纪将不仅在终端侧,还将在云服务器侧发布产品。

今年9月,通信设备制造商华为发布手机人工智能芯片麒麟970,970中的NPU(网络处理器)专用硬件处理单元就是寒武纪1A,后者以授权的方式集成进入麒麟970。

不过,华为仍有望独立发展人工智能芯片,华为已开始研发服务器芯片,该公司消费者业务CEO余承东称,人工智能的实现必须通过端云协同。

前文提到的地平线机器人公司,成立于2015年,创始人兼CEO余凯曾主政百度研究院和深度学习实验室,在他影响下百度吸纳了一批人工智能专家。

地平线机器人前期曾打算做人工智能时代的英特尔,但一段时间尝试后,余凯告诉《财经》记者,“我们的定位是嵌入式人工智能芯片,既不在互联网公司的势能范围,又避开和巨头的竞争,会有更大的价值。”

英特尔通过收购构建了多种发展人工智能的道路,兵多将广,而英伟达产品有亮点,抓住一块核心的GPU。地平线这样的创业公司缺少强大的资金、技术和生态支持,需要避开巨头重兵把守的云服务器侧,但在设备边缘,嵌入式人工智能芯片将有更大的想象力。

地平线发展的策略是,针对使用场景需求研究最适合的算法框架,然后将算法框架实现在芯片上。也就是说,通过应用倒逼芯片设计。其优势是,可以集中资源单点突破,进而降低半导体产业投资的风险,以及通过销售解决方案获利推动自身良性运转。

与寒武纪选择通用芯片商业模式不同,地平线更加侧重专用,为市场提供的不只是芯片,而是软硬整体解决方案,“这很像Mobileye”,余凯认为,英特尔愿意花153美元亿巨款收购,这是说服投资者认可基于专用人工智能芯片解决方案最好的案例。

投资了地平线的祥峰投资合伙人夏志进对创业公司充满信心,“大家都在同一条起跑线上,英伟达也是,它们(指巨头)有历史包袱”。在他看来,芯片只是地平线商业的一部分,未来投资回报周期远小于半导体行业,“我可以等这个企业5年-10年”。

警惕炒作

人工智能芯片毫无疑问是一个巨大的产业发展趋势,但第三方机构Gartner分析师盛陵海告诉《财经》记者,原有芯片不会一夜之间变成人工智能芯片,现在产业有过度炒作的嫌疑。

在收获成功的同时,英伟达的高市值也早于挑战。业界担心,它拥有的技术难以支撑起当前高涨的市值。人工智能开源实验室OpenAI联席主席Sam Altman提醒称,GPU最初的设计目标并非人工智能,只是恰好满足需求。

多个受访者对《财经》记者表示,人工智能应用场景将不再是单一类型的终端设备,这意味着,芯片公司应具备提供多元化产品的能力,但英伟达的GPU仍是一种通用型芯片。

多家IT公司已经开始纷纷研发专用芯片并加大资金投入。

芯片设计公司zGlue CEO张铭表示,“大公司仍希望通过通用芯片分摊研发费用”,但人工智能市场更加需要定制化的产品出现。

不过,定制化芯片和通用芯片路线的选择转圜上,大公司的余地远大于创业公司。谷歌的TPU只是目前已经对市场宣布的产品,未来一旦伴随谷歌云计算业务对外提供服务,将以低成本和灵活性直击英伟达腹地。一位产业内人士表示,“垄断”意味着获取的高成本,而英伟达的芯片并不便宜。

由此可见,人工智能芯片最终的胜利者很有可能依然是既有的芯片巨头,其他芯片公司很可能只能偏安一隅。

与美国创业者可以接受公司出售给大公司不同,中国厂商往往希望在巨头的夹缝中独立发展。但在智能安防、手机、无人机、智能汽车、机器人等行业,巨头正在一个个细分垂直行业慢慢渗透。

大鱼吃小鱼在过去已不鲜见,半导体产业依然是强者恒强的逻辑。

(原标题:人工智能芯片卡位战正酣,中国公司机会难得)


鲜花

握手

雷人

路过

鸡蛋

说点什么...

已有0条评论

最新评论...

本文作者
2017-10-30 11:05
  • 0
    粉丝
  • 182
    阅读
  • 0
    回复

关注迪恩网络

扫描关注,了解最新资讯

联系人:高经理
电话:15562103797
EMAIL:125422921@qq.com
地址:威海市创新创业大厦2702
热门评论
排行榜

关注我们:微信订阅号

官方微信

服务热线:

010-58414718

电子邮件:peter@aihey.cn

地址:北京

Copyright   ©2007-2018  智为网 Powered by©aihey.cn ( 京ICP备08005157号-5